Little boat built by students in Kennebunk completes Atlantic crossing

6/27/17

‘The Little Boat That Could’ washes ashore in Scotland after traveling thousands of miles since January.

“The Little Boat That Could” has lived up to its name.

After 168 days and 12 hours at sea, a small sailboat built by high school students in Kennebunk washed ashore in Scotland after traveling thousands of miles. The boat had sailed across the Atlantic, then up and down the coasts of Portugal, Spain and Ireland before it was discovered Friday by a pair of Canadian tourists exploring a beach on a remote Scottish island.

“It really was a crazy journey,” said Leia Lowery, the director of education for the Kennebunk Conservation Trust who worked with the students who built the boat and documented its journey on Twitter.

The 5-foot boat washed up on Balivanich Airport Beach on the island of Benbecula, where it was found Friday by John and Angelika Dawson of British Columbia as they were walking their dog. The couple notified local police, who called the Scottish coast guard.

At first, no one quite knew what to make of the boat, which is covered with stickers from Maine groups and businesses. The blue and white sail is a bit tattered and the underside of the boat is covered in mussels, but the solar panel, camera and sensors appear to be undamaged. Even the tiny Lego pirate that had been the students’ mascot while they built the boat survived the journey intact.

1217426_213748-LittleBoatToScotland

“Everyone was really excited to hear it was in pretty good shape,” said Ed Sharood, a teacher who worked with the students to build the boat and who informed them of its discovery via text message and email. Some students who had doubted the boat could make it were a bit surprised, he said.

After determining the boat was not hazardous, the Scottish coast guard moved it to a secure location while officials tried to contact the owner, according to a Facebook post from the HM Coastguard Benbecula. In an update, the HM Coastguard Benbecula said the boat has been handed over to Mari Morrison, a primary school teacher from North Uist. Morrison had previously been involved with the rescue and repair of a similar mini boat that landed in Scotland in 2016.

The boat project is part of an ongoing partnership between the students in the Kennebunk High School Alternative Education program and the Kennebunkport Conservation Trust. The trust bought the kit to make the boat from Belfast-based Educational Passages using an $1,800 grant from San Francisco-based RSF Social Finance.

 

Even the Lego pirate on the boat launched by high school students in Kennebunk survived the transatlantic journey to Scotland. Photo courtesy of John and Angelika Dawson

 

Seven students from the high school program teamed up with the trust and The Landing School in Arundel to construct the 5-foot self-steering boat that is powered solely by wind and currents. Inside the boat – named “The Little Boat That Could” by students – is a waterproof pod that includes a chip that should have collected data from the sensors, along with information about the alternative education program, Kennebunkport Conservation Trust and items that tell about life in Maine.

Kristen Cofferen, one of the students working on the project, suggested the boat’s name after a classmate expressed skepticism that it would make it across an ocean.

“We thought it would be a good opportunity to engage ourselves,” Cofferen said in December when the students were finishing up the project.

Students in the alternative education program take classes for the first couple of hours each day, then spend the rest of the school day in the community working on projects and learning about career opportunities. There are seven students in the program, which launched in 2012 to serve kids who weren’t finding success in traditional classrooms.

Students handed the boat over to Educational Passages on Dec. 29 and it was launched near Georges Bank on Jan. 2 by a fishing vessel from the Portland Fish Exchange.

The students and their teacher tracked the boat on the Educational Passages website, following its progress as it initially made a beeline for Spain before veering south toward Morocco. It came within 100 miles of Portugal, then headed back out to sea.

“We laughed and said we’re the only ones who would send out a boat that would boomerang right back home,” Lowery said.

1217426_213748-20161209_littlebo2

The Maine students had hoped their boat would make it to across the Atlantic and that they’d be able to connect with students in another country via Skype. Now that Sharood and Jacqui Holmes, the other teacher working with the students, are in touch with the Scottish teacher, they’re planning to make that happen.

Sharood said Morrison’s students have been studying the ocean. During an assembly celebrating the last day of school Friday, Morrison plans to bring out “The Little Boat That Could” to show students. Sharood and Holmes plan to coordinate with Morrison to start a conversation between students in Maine and Scotland.

Sharood thinks his students will have lots of questions about Scottish culture and life on Benbecula, an island off the west coast of Scotland with about 1,300 people. He said they’ll work with the Scottish teacher and students to retrieve the data and make repairs so “The Little Boat That Could” can be relaunched. Sharood and Lowery also are dreaming of finding a way to get the Kennebunk students to Scotland for a once-in-a-lifetime trip to learn about the island where their boat made landfall.

“So many of (our students) thought the boat wasn’t going anywhere. They ironically named it ‘The Little Boat That Could,’” Lowery said. “I wish we could get these kids over there to teach those kids how to fix the boat and relaunch it.”

More information about the path the boat traveled is available on the Educational Passages website.

The Next Phase of the Maker Movement? Building Startups

Edsurge

The Next Phase of the Maker Movement? Building Startups
Zainab Oni, speaking at the Mouse 20th-anniversary event

“Everything that is old is new again!” Daniel Rabuzzi exclaims, his eyes light up with excitement that seems to match the glowing, handcrafted flower pinned on his vest. He’s talking about the next wave of the Maker Movement, big news buzzing amongst makers in the inner circle.

Rabuzzi is the executive director of Mouse, a national nonprofit that encourages students to create with technology. The organization, now celebrating 20 years in operation, is part of the worldwide Maker Movement, encouraging students to get creative (and messy) when using technology to build things. Rabuzzi calls his work at Mouse “shop and home economics for the 21st century,” and his students “digital blacksmiths.”

Mouse students showcasing green energy ideas

Rabuzzi, like many experts within the Maker Movement, believes the heavy emphasis on standardized testing in schools, which has pushed the arts, shop and home economics into the shadows, is what spurred outside groups like Mouse to begin hosting alternative makerspaces for students. Throughout the years, Rabuzzi has seen the movement evolve. Most recently, he’s seen technology become more directly integrated with making, along with an uptick of women in leadership.

“It can’t just be the boys tinkering in the basement anymore,” says Rabuzzi, pointing to women in maker leadership, like littleBits founder Ayah Bdeir, who encouraged more young girls to enter the space.

Now Rabuzzi, along with makers, investors, and journalists, are buzzing about what they describe as the next wave of making: the Maker economy, which many believe will transform manufacturing the United States by integrating with the Internet of Things (IOT), augmented reality (AR), virtual reality (VR) and artificial intelligence (AI).

“There is all this talk about bringing back manufacturing to America, and I feel like this is going to come back on a local level,” says Juan Garzon, former Mouse student, who started his hardware company. He believes that personalized goods designed and manufactured by Makers through mediums like 3D printing will drive the return of domestic manufacturing.

“The future of manufacturing is not a big plant, but someone designing what they want and developing custom made things. It sounds so sci-fi, but it is within my lifetime,” continues Garzon.

News reports from Chicago Inno show that custom manufacturing designed by makers might be an active part of the domestic economy sooner than Garzon realizes. Inno reports that several Maker-entrepreneur spaces are popping up in the city with hopes to develop places where creators can build scalable products to be manufactured, creating new businesses.

Audience members viewing Mouse student’s VR projects

For many, talk of 3D printing and merging Making with AI are bleeding edge topics, far away from today’s realities. But for technologists supporting Mouse, this the world they want to prepare students to be a part of.

Mouse students at the 20th-anniversary party are already getting started. At the event, some students proudly showed off projects they designed in 3D spaces that can be viewed and altered in virtual reality. Many of the projects students worked on required a mixture of creativity, technical skills and awareness of the societal needs. Displays showcasing green energy projects along with digitalized wearable technology for persons with disabilities were all throughout the room. Still, Rabuzzi imagines more.

He hopes that through making, students can test the limits of new technologies and do good for the society. “How do we use Alexa and Siri in the Maker Movement?” Rabuzzi wonders aloud. He describes his idea of using AI to support students in designing, prototyping and creating new learning pathways in future, but admits that he doesn’t have the funding or technology for such ambitious projects now. He hopes that some of Mouse’s corporate funding partners are interested in supporting the endeavors.

“We are preparing today’s young people for a cyber future,” he explains. “In the old days if you had a clever idea you had to go into a big company to get it done. Now you can make it yourself.”

How to Prepare for an Automated Future

Photo

Sebastian Thrun, left, the co-founder of Udacity, which provides online courses, recording for a programming class with Andy Brown, a course manager. Experts say online courses will be essential for workers to remain qualified as more tasks become automated. CreditMax Whittaker for The New York Times

We don’t know how quickly machines will displace people’s jobs, or how many they’ll take, but we know it’s happening — not just to factory workers but also to money managers, dermatologists and retail workers.

The logical response seems to be to educate people differently, so they’re prepared to work alongside the robots or do the jobs that machines can’t. But how to do that, and whether training can outpace automation, are open questions.

Pew Research Center and Elon University surveyed 1,408 people who work in technology and education to find out if they think new schooling will emerge in the next decade to successfully train workers for the future. Two-thirds said yes; the rest said no. Following are questions about what’s next for workers, and answers based on the survey responses.

How do we educate people for an automated world?

People still need to learn skills, the respondents said, but they will do that continuously over their careers. In school, the most important thing they can learn is how to learn.

At universities, “people learn how to approach new things, ask questions and find answers, deal with new situations,” wrote Uta Russmann, a professor of communications at the FHWien University of Applied Sciences in Vienna. “All this is needed to adjust to ongoing changes in work life. Special skills for a particular job will be learned on the job.”

Schools will also need to teach traits that machines can’t yet easily replicate, like creativity, critical thinking, emotional intelligence, adaptability and collaboration. The problem, many respondents said, is that these are not necessarily easy to teach.

“Many of the ‘skills’ that will be needed are more like personality characteristics, like curiosity, or social skills that require enculturation to take hold,” wrote Stowe Boyd, managing director of Another Voice, which provides research on the new economy.

Can we change education fast enough to outpace the machines?

About two-thirds of the respondents thought it could be done in the next decade; the rest thought that education reform takes too much time, money and political will, and that automation is moving too quickly.

“I have complete faith in the ability to identify job gaps and develop educational tools to address those gaps,” wrote Danah Boyd, a principal researcher at Microsoft Research and founder of Data and Society, a research institute. “I have zero confidence in us having the political will to address the socioeconomic factors that are underpinning skill training.”

Andrew Walls, managing vice president at Gartner, wrote, “Barring a neuroscience advance that enables us to embed knowledge and skills directly into brain tissue and muscle formation, there will be no quantum leap in our ability to ‘up-skill’ people.”

Will college degrees still be important?

College is more valuable than ever, research shows. The jobs that are still relatively safe from automation require higher education, as well as interpersonal skills fostered by living with other students.

“Human bodies in close proximity to other human bodies stimulate real compassion, empathy, vulnerability and social-emotional intelligence,” said Frank Elavsky, data and policy analyst at Acumen, a policy research firm.

But many survey respondents said a degree was not enough — or not always the best choice, especially given its price tag. Many of them expect more emphasis on certificates or badges, earned from online courses or workshops, even for college graduates.

One potential future, said David Karger, a professor of computer science at M.I.T., would be for faculty at top universities to teach online and for mid-tier universities to “consist entirely of a cadre of teaching assistants who provide support for the students.”

Employers will also place more value on on-the-job learning, many respondents said, such as apprenticeships or on-demand trainings at workplaces. Portfolios of work are becoming more important than résumés.

“Résumés simply are too two-dimensional to properly communicate someone’s skill set,” wrote Meryl Krieger, a career specialist at Indiana University. “Three-dimensional materials — in essence, job reels that demonstrate expertise — will be the ultimate demonstration of an individual worker’s skills.”

What can workers do now to prepare?

Consider it part of your job description to keep learning, many respondents said — learn new skills on the job, take classes, teach yourself new things.

Focus on learning how to do tasks that still need humans, said Judith Donath of Harvard’s Berkman Klein Center for Internet & Society: teaching and caregiving; building and repairing; and researching and evaluating.

The problem is that not everyone is cut out for independent learning, which takes a lot of drive and discipline. People who are suited for it tend to come from privileged backgrounds, with a good education and supportive parents, said Beth Corzo-Duchardt, a media historian at Muhlenberg College. “The fact that a high degree of self-direction may be required in the new work force means that existing structures of inequality will be replicated in the future,” she said.

Even if we do all these things, will there be enough jobs?

Jonathan Grudin, a principal researcher at Microsoft, said he was optimistic about the future of work as long as people learned technological skills: “People will create the jobs of the future, not simply train for them, and technology is already central.”

But the third of respondents who were pessimistic about the future of education reform said it won’t matter if there are no jobs to train for.

“The ‘jobs of the future’ are likely to be performed by robots,” said Nathaniel Borenstein, chief scientist at Mimecast, an email company. “The question isn’t how to train people for nonexistent jobs. It’s how to share the wealth in a world where we don’t need most people to work.”

Finland Will Become the First Country in the World to Get Rid of All School Subjects

Brightside

Finland Will Become the First Country in the World to Get Rid of All School Subjects

Finland’s education system is considered one of the best in the world. In international ratings, it’s always in the top ten. However, the authorities there aren’t ready to rest on their laurels, and they’ve decided to carry through a real revolution in their school system.

Finnish officials want to remove school subjects from the curriculum. There will no longer be any classes in physics, math, literature, history, or geography.

The head of the Department of Education in Helsinki, Marjo Kyllonen, explained the changes:

“There are schools that are teaching in the old-fashioned way which was of benefit in the beginning of the 1900s — but the needs are not the same, and we need something fit for the 21st century.“

Instead of individual subjects, students will study events and phenomena in an interdisciplinary format. For example, the Second World War will be examined from the perspective of history, geography, and math. And by taking the course ”Working in a Cafe,” students will absorb a whole body of knowledge about the English language, economics, and communication skills.

This system will be introduced for senior students, beginning at the age of 16. The general idea is that the students ought to choose for themselves which topic or phenomenon they want to study, bearing in mind their ambitions for the future and their capabilities. In this way, no student will have to pass through an entire course on physics or chemistry while all the time thinking to themselves “What do I need to know this for?”

The traditional format of teacher-pupil communication is also going to change. Students will no longer sit behind school desks and wait anxiously to be called upon to answer a question. Instead, they will work together in small groups to discuss problems.

The Finnish education system encourages collective work, which is why the changes will also affect teachers. The school reform will require a great deal of cooperation between teachers of different subjects. Around 70% of teachers in Helsinki have already undertaken preparatory work in line with the new system for presenting information, and, as a result, they’ll get a pay increase.

The changes are expected to be complete by 2020.

4 Tips on Teaching Problem Solving (From a Student)

Edutopia

Two Rivers Public Charter School

GRADES PRE-K TO 8 | WASHINGTON, DC

At Two Rivers Public Charter School, they taught us how to problem solve, and they made it relevant. Here are four tips that engaged me in my learning that you can adapt in your classroom:

1. Give Your Students Hard Problems

In the real world, we’re not going to have nice problems that will be easy to understand. We are going to have complex problems that require a lot more preparation than most math, science, or English classes will give us. The challenges in the real world won’t be simple, and the problems that are supposed to prepare us for that world shouldn’t be either.

2. Make Problem Solving Relevant to Your Students’ Lives

In the seventh grade, we looked at statistics concerning racial murders and the jury system. That’s something that is going to affect students later in life, and we got a chance to look at it from a mathematical perspective. Problems like that are actually relevant to us, and they’re not things we’re supposed to just memorize or learn. They are things from which we can take very important life lessons, and then actually apply them later on in life.

Related Article: Solving Real World Issues Through Problem-Based Learning

In the eighth grade, we wrote policy briefs in relation to gene editing and presented them to the National Academies of Sciences, Engineering, and Medicine. We talked to researchers who worked with CRISPR-Cas9 (a gene editing tool used to modify specific genes in organisms), and we studied how gene editing is evolving and how we can use this modern technology for science applications. At the same time, in English, we read The Giver by Lois Lowry and analyzed whether the society in the book was ethical to gain an understanding of what ethical means and how it’s applicable in real situations, like gene editing.

This wasn’t something where we were being told, “Somebody’s going to buy 60 watermelons at a store.” This was actually happening in real life, and the only people really discussing this were people whom it wasn’t even going to affect. This science won’t come into widespread use until much later, and we’re going to be the first ones who are actually in danger from the possible consequences of it. By presenting our policy briefs, we had a chance to make an impact and get our voice out there at only 14.

3. Teach Your Students How to Grapple (It’s More Powerful Than Perseverance)

Grappling is like perseverance, but it goes beyond that. Perseverance means trying again and again, even after you’ve failed. Grappling implies trying even before you fail the first time. It’s thinking, “First, I’ll work with it independently. Okay, I’m really not understanding it. Let me go back to my notes. Okay, I have solved for the first part of it. Now I have the second part of it. Okay, I got the question wrong; let me try again. Maybe I can ask my peer now.” Grappling is working hard to make sure you understand the problem fully, and then using every resource at your fingertips to solve it.

4. Put More Importance on Student Understanding Than on Getting the Right Answer

I am graduating from Two Rivers with a practical view of the world. I don’t think that many students come out of middle school saying, “It was great.” And I don’t think many students have had this introduction to our society and its benefits and drawbacks. I’m also coming out of here with incredible problem-solving skills and the ability to look at any problem and have 10,000 ways to solve it in my mind already—because we don’t just memorize functions or the periodic table. We understand why, and we work to understand how to solve a problem instead of just getting the answer.

As students preparing for the real world, it is so much more impactful for us if our learning is relevant and challenging than if it is just about memorizing the right answers.

Ideas For Teaching With Cardboard in Makerspaces

Cardboard Creators: Reusing to Learn

October 25, 2016
Switching from high school science to middle and high school gifted students has reawakened that sometimes uncomfortable sense of discovery of new teaching, where so much seems imperfect … I’m working with the mantra of imperfection.

That’s a good mantra for my students as well. Some students have never swung a hammer, threaded a needle, or made a model that was not outlined on card stock. Common day experiences have been digitized in our world, and access to extra materials is extremely limited for others. My solution: create a makerspace in my classroom and offer design challenges students can do with little more than string, glue, and cardboard. Cardboard, my makerspace material of choice, is available in every home in America.

From mac and cheese boxes to a shoebox, cardboard is a material that puts students on a level playing field. It’s free. Students can cut thin stuff with scissors or score corrugated material with a pair of safety scissors, and tape is cheap enough that I can send a partial roll home with a student who needs it. Kids in families who cannot afford clay or craft kits or have little money for additional classroom supplies can still imagine something using materials that belong to them. That equals the playing field among students who ‘have not’ with students who ‘have’ adequate resources.

Sure, many educators say, but this is learning time. How can cardboard be transformed into learning strategies benefiting students across disciplines? Here are four sample cardboard projects to get started.

1. Three-dimensional thinking by building artifacts. While it may seem unusual to us as educators, take the time to ask students how many have been in a barn, gone to a zoo, camped in a tent, or taken care of an animal. So many readings describe experiences for which students have no background knowledge. For example, Finding Winnie, the winner of the 2015 Caldecott Medal, is filled with unfamiliar venues. It took the illustrator, Sophie Blackall, over a year of research to visit all the places referenced in the book. My youngest middle school students are trying to build a single item model for just one scene in the book, ranging from an ocean liner to a tree to an antique car.

2. Imagining a Character. Middle school students love the idea of cosplay. Designing cardboard armor to imagine a warrior or superhero in a story is a simple way to use materials to portray their vision. The prompt can be as simple as, “Design a character to defend the castle.” It’s powerful to have the ability to create even an imperfect vision, instead of a project executed primarily by an overly helpful parent. Student processes are best remembered when the mistake or chance for failure becomes the driver for the learning.

3. Design thinking prototypes. The goal of design thinking is to solve a problem using a process of listening and developing empathy. Students struggle with this because they often design for themselves, rather than for a specific audience. After reading spooky stories that tie into both the Halloween season and the idea of justice, my students still struggled with the idea of putting themselves in another person’s shoes. How America is dealing with the idea of ‘liberty and justice for all’ is an example of a difficult idea. We used design thinking as the introduction to a conversation on empathy. Before the extended conversations at the end of the unit, I wanted to know if students could listen carefully. For one assignment, I asked them to set up a display prototype that combined scary elements from the stories and a building to contain a prisoner. While the artist of the classroom created a skeleton playing a trumpet by using scissors, this student didn’t follow directions, and his client (the teacher) was unsatisfied with the result. In contrast, the winner of the challenge created two ghosts out of cardboard shoulder pads and a turret out of thin cardboard, creating a powerful classroom lesson about utility versus perfection as well as listening.

4. Modeling. How does osmosis take place? What caused the creation of the universe? These are powerful questions, deep questions, and ones for which a teacher might not have the answer; however, they are just the type of questions my gifted students might ask. I pair students with an outside mentor via Skype or Google Hangouts by using the power of social media to find willing experts. To help students process difficult ideas, the Next Generation Science Standards recommend models as tools. Students often don’t think about making their own models unless teachers expose them to the idea as a strategy. Cardboard models are one way to go deeper in visible thinking and to augment visual notetaking. As described in Harvard’s Project Zero, initiatives like Agency by Design requires students to look closely at what they are doing to help discover complex ideas. When the students push back, I remind them of James Watson and Francis Crick, and how the cardboard models they created led to an understanding of DNA.

Tips on Creating a Cardboard Makerspace

  • Collect one or two plastic tubs of materials for your classroom.
    • In the first tub, start saving oddly-formed shapes of cardboard packaging from the IT department, or even toilet paper rolls. Corrugated cardboard is especially hard for younger students to cut. Resist the temptation to put full boxes in the box, or students will simply use them without modification (something I learned in this challenge).
    • In the second tub, place tape, string, and remnants of duct tape. I simply placed a box at my local church and asked for donations of half-used tape, white glue, and crochet thread.
  • Find donated materials. Reach out to close friends on Facebook, or check with a hardware store or custodian for unwanted materials.
  • Get a grant or donation from a big box store, or organize a campaign onDonorsChoose.
  • Build rubrics so students have a framework of expectations, but be willing to revise them as needed. The first creations may not be as rich as you expect, but this provides opportunities for further learning.

Building creations and making cardboard artists will also build memories in the journey of learning. Along the way, new skills and collaboration will help us become better learners.

Minecraft May Finally Be Coming To US Schools

dogonews

By Kim Bussing on September 11, 2016

Photo Credit: Minecraft: Education Edition

Shortly before the school year ended in June, 1,700 kids American kids got to do what most students can only dream of — play video games in class. No, the 100 educators that allowed this were not slacking off. They were helping Microsoft beta test a new Minecraft Education Edition, which the company plans to offer to schools across the globe within the next few weeks.

While the computer game, which challenges kids to use their imagination by building futuristic virtual worlds, has been offered in Swedish schools since 2013, it has not been widely embraced by educators elsewhere. But project director Deirdre Quarnstrom believes that this new education version, where students get to create their own stories and games, will be a huge success with both student and teachers.

Photo Credit: education.minecraft.net

Of course, the classroom version will have some differences from the traditional game you might play at home. Non-player characters, placed into the game by teachers, will provide guidance and narration, while a chalkboard will allow them to write instructions. A control panel called Classroom Mode will enable educators to grant students access to resources, monitor their location, send messages, and even teleport students to the right place should they wander off or get lost. Teachers unfamiliar with the game can select from numerous pre-created immersive lesson plans that range from exploring the Temple of Artemis to modeling biodiversityloss.

For educators concerned that bringing video games into the classroom might reduce classroom collaboration, there is a multi-player mode. Using this, students can enter other’s games and help their peers solve an issue they may be struggling with or test out new ideas.

Photo Credit: education.minecraft.net

However, while these features add more structure and allow teachers to give specific assignments, students still have complete freedom to use their imagination and creativity to program a game based on their interest, whether it’s a science-fiction movie or their favorite fantasy series. Quarnstrom says Microsoft has kept the game “pure” to ensure kids (aged 5 and above) have an authentic Minecraft experience.” The director believes that “a lot of what creates that kind of magical educational experience is the no-rules sandbox environment. Students really feel inspired to keep going and set up their own challenges, which is exactly what educators want to see.”

The students and teachers fortunate to be selected for the June beta test seem to agree. 13-year-old Elena Rezac, who built a quest-driven maze inspired by the science fiction movie,”The Maze Runner,” says that the game is “lots of fun because you can do whatever you want.” Her teacher, Steve Isaacs, approves of the game because it encourages students to be inventive. The educator says that the game’s varied choices allow every kid to find an area where he/she can succeed.

Photo Credit: education.minecraft.net

The Minecraft Education Edition that is expected to cost between $1 to $5 a student, will be launched sometime this month. Meanwhile, educators can introduce gaming to their classrooms by signing up for the beta version. While it doesn’t have all the features of the final product, it is a good way how students engage with this popular video game, without paying a dime.

Resources: Fastcompany.com,the verge.com,cnnmoney.com

https://www.youtube-nocookie.com/embed/ZVZm85lI5QI?rel=0&showinfo=0&wmode=transparent

https://www.youtube-nocookie.com/embed/hl9ZQiektJE?rel=0&showinfo=0&wmode=transparent